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812O)10 and it absorbed 4 equiv of H2 when subjected to 
catalytic hydrogenation.12 Yields of 3 remained between 84 
and 94% in the temperature range 250-500°, using the S or 
D-S techniques, the only other products being variable 
amounts of fr««5,-l-ethynyl-2-vinylcyclopropane (t-5) (0-
11%), obtained at relatively low temperatures (<300°), and 
4-ethynylcyclopentene (4),13 obtained only at high temper­
atures (4% at 500°). In cases where the hot tube technique 
was utilized at 500°, yields of 3 and 4 were 39 and 26%, re­
spectively, while no t-5 was detected. 

/-5 evidenced characteristic ir absorptions at 3320 
( = C — H ) and 2120 ( C = C ) cm"1 , and its N M R (CDCl3, 
100 MHz) showed peaks at 8 1.40-0.80 (m) (H6, H7 , H8), 
1.85 (d) (H5) (/5,6 = 2.0 Hz), and 1.94-1.58 (m) (H4) and 
an ABX system with multiplets centered at 8 4.96 (H3), 
5.12 (H2) , and 5.40 (H1) with Ju2 = 16.8, J,,3 = 9.5, JiA = 
7.5, and / 2 , 3 = 2.5 Hz: 

Thermolysis of syn- and 
ai?tf-Tricyclo[4.1.0.02'4]heptan-5-ylidene. 
CiS-1 -Ethy ny 1-2-viny ley clopropane 

Sir: 

Carbenes undergo a myriad of rather unique reactions, 
including a number of unusual unimolecular, r/-bond frag­
mentation processes.1 These include the conversion of cyclo-
propylidene to allene2 and the cleavage of cyclopropylcar-
bene into ethylene and acetylene.3 Another potential frag­
mentation process is the conversion of cyclopentylidene into 
allene and ethylene. Heretofore such a process has been ob­
served only in the case of oxycarbenes where a ketene rath­
er than an allene is extruded.4 

It was anticipated that syn- and ani/'-tricyclo-
[4.1.0.02'4]heptan-5-ylidene ( IS and 1-A) might fragment 
in such a manner to yield the highly strained 1,2,5-cyclo-
heptatriene (2). Indeed, when the tosylhydrazone sodium 

4^h or /Ch 
l-S 1-A 

salt precursors of l-S and 1-A5 were pyrolyzed using static 
(S), drop-static (D-S), or hot tube (T) techniques,7 up to 
94% yield of a dimeric hydrocarbon material was produced. 
This dimer was demonstrated spectroscopically to have the 

Na+ 

/ N — T s syn -^* 1 -S 

anti 1-A 

% S 

O- < 
t-5 

structure 3.9 Dimer 3 was a white crystalline solid, mp 46-
47°, which showed only broad multiplets in the N M R at 5 
5.55 (6 H), 3.02 (4 H), 2.90-2.45 (2 H), and 2.33 (4 H). 3 
had a characteristic uv absorption at Xmax 254 nm (e 

It seems probable that products 3, 4, and t-5 derive from 
the highly strained cyclic allene, 1,2,5-cycloheptatriene (2), 
t-5 being formed reversibly at temperature >200°. Indeed 
it was found that in solution at temperatures >200°, /-5 
converted quantitatively to dimer 3. 

t t-5 

The significance of these results revolves around the 
question of the role played by the 1,2,5-cycloheptatriene. Is 
it formed directly from 1-A and l-S via synchronous C2-C4 
and C i - C 6 fragmentation or does it derive from another 
pathway? The total lack of dependence of product ratios 
upon the syn or anti nature of 1 speaks against a synchro­
nous pathway for formation of 2. Strong evidence in favor 
of a more conventional pathway was obtained when signifi­
cant amounts of cw-l-ethynyl-2-vinylcyclopropane, c-5 
were isolated from low-temperature (160-200°) static py-
rolyses of either salt. The isolation of c-5 apparently derived 
from the ability to distill the diazo compound 6 from the 
hot region prior to its loss of N2 . Condensed on the subli-
mator cold finger at —80°, the reddish species then decom­
posed slowly yielding the highly unstable c-5 in up to 25% 
yield with the remainder of the products consisting of dimer 
3 and azine formed from 6. 

N = N 
Io 

temperature 

c-5 

m-l-Ethynyl-2-vinylcyclopropane gave an ir spectrum 
similar to that of the trans isomer (i.e., peaks at 3310 and 
2120 cm"1) and an N M R spectrum (100 MHz, CDCl3) 
which showed two one-proton multiplets at 8 0.78 (H8) and 
1.20 (H7), a two-proton multiplet region at 1.48-1.84 (H4 

and H6), doublet at 1.88 (H5) , and an ABX pattern with 
multiplets centered at 8 5.10 (H3), 5.24 (H2) , and 5.64 
(Hi). Coupling constants were 7i i 2 = 15.8, 7i,3 = 8.5, J\A 

= 7.5, 72,3 = 2.5, and J5,6 = 2.0 Hz. 
It was found that c-5 underwent conversion rapidly (t i/2 

= 4.3 hr at 30°) to the dimer 3, ostensibly via a Cope rear-
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rangement to 1,2,5-cycloheptatriene. The kinetics were fol­
lowed in the uv at five temperatures between 30 and 48° in 
ethanol. Plots of log Co /C vs. time were found to be linear 
through three half-lives with the sole observable product 
being dimer 3. Thus the reaction appears to be first order 
with rate-determining Cope rearrangement being followed 
by very rapid bimolecular dimerization. An Arrhenius plot 
of the data yielded a good straight line the equation of 
which was obtained by a least-squares analysis: 

log /k/sec-1 = (9.98 ± 0.22) -
(19,893 ± 310)cal mory2 .303 .RT 

This corresponds to A//* = 19.3 kcal/mol and AS1 = - 1 5 
eu at 39°, activation parameters which are certainly com­
patible with a rate-determining Cope process. 

It thus appears that m-l-ethynyl-2-vinylcyclopropane 
rearranged to 1,2,5-cycloheptatriene with a facility equal to 
that of conversion of cw-l,2-divinylcyclopropane (7) to 
1,5-cycloheptadiene (A/ / 1 = 19.4 ± 1.8 kcal/mol and AS* 
= — 5 ± 7 eu).14 While the overall process of dimer forma­
tion should be very exothermic (AHQ = —40-50 kcal/mol 
of c-5)15 the rate-determining formation of 2 should be en-
dothermic by ~12 kcal/mol.15 This is in contrast to the ex-
othermicity of ~23 kcal/mol for the m-l,2-divinylcyclo-
propane rearrangement.15 Moreover, it appears that the 
Cope process of cw-l,2-diethynylcyclopropane, which could 
lead initially to an even more strained diallenic intermedi­
ate, occurs with a rate constant similar to those of c-5 and 
7 16 

While the source of the bulk of the dimer from these py-
rolyses has not been unambiguously ascertained,17 it does 
appear reasonable that the major, if not only, primary frag­
mentation product is «'.s-l-ethynyl-2-vinylcyclopropane,18 

and that this then rearranges to 1,2,5-cycloheptatriene20 

which rapidly dimerizes. The structure of this highly reac­
tive allenic intermediate is a matter of some significance. 
The question yet unanswered experimentally is whether this 
allene is a planar diradical or dipolar species, such as 8, or a 
twisted, strained-but-bonded allene. Calculations by Dillon 
and Underwood indicate that a planar structure may be 
most stable and that a triplet, biradical species may be the 
ground state.22 

The unexpected, low-activation-energy Cope rearrange­
ment of m-l-ethynyl-2-vinylcyclopropane is presently re­
ceiving further attention in our laboratories, as are probes 
of the nature of 1,2,5-cycloheptatriene. 
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Book Reviews 
Introduction to Organic Electrochemistry (Techniques and Applica­
tions in Organic Synthesis Series). By M. R. RlFl and FRANK H. 
COVITZ (Union Carbide, Research and Development Depart­
ment). Marcel Dekker, Inc., New York, N.Y. 1974. vii + 417 pp. 
$26.50. 

This book is designed to initiate organic chemists into the mys­
teries of electrochemical synthetic methods. 

The first chapter includes a frank discussion of the advantages 
and disadvantages of the method and a historical background. The 

second chapter covers the basic principles in about 60 pages, 
touching on the Nernst equation and diffusion as well as such esot-
erica as double layer capacitance, adsorption, iR drop effects, 
junction potentials, etc. It includes a particularly lucid discussion 
of charge-transfer rate constants. The third chapter covers appara­
tus and techniques. The discussion of electrode materials and their 
pretreatment, solvents, supporting electrolytes, and practical syn­
thetic cells is excellent. The authors also discuss measurement and 
recording devices, coulometers, and potentiostats and provide a 
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